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Abstract-An approximate solution for the transient LevCque problem has been developed based on the 
approximate integral method and the method of weighted residuals. This solution can be used to explore 
the dynamic response of thermal or mass boundary layers in large amplitude, but non-reversing, unsteady 
flows. The accuracy of this approximate solution has been proven over a wide range of dimensionless 
frequencies (o = Q(L’/$D)‘*‘). The approximate solution forms the basis of a simple method for cal- 
culating the instantaneous shear rate from the lneasurement of instantaneous heat or mass flux at the 

surface of a wall transfer probe when the quasi-steady state assumption is not valid. 

I. INTRODUCTION 

HEAT AED mass transfer probes are used extensively 

to measure wall shear rates in flow systems. For steady 
flows, it was first demonstrated by Leveque [ I] that the 
heat (mass) flux across the thermal (concentration) 
boundary layer is proportional to the one-third power 
of the local shear rate. PIccording to this relationship, 
the wall shear rate can be determined by measuring 

the associated heat (mass) flux at the probe surface. 
A review of experimental and theoretical problems 
associated with the application of this technique is 
given by Hanratty and Campbell [2]. In addition, it 
should be noted that numerous other works related 
to this subject have been published [3-6]. 

When wall transfer probes are applied to unsteady 

Aows in which the variation of shear rate is very slow. 
a quasi-steady state assumption can be made and the 
one-third power law can still be used to calculate 
the instantaneous wall shear rate. However, in many 
cases, the inertia of the thermal (concentration) 
boundary layer cannot be neglected and the quasi- 
steady state assumption is not valid. Hence, the appli- 

cation of wall transfer probes has usually been restricted 
to low frequency flows where the quasi-steady state 
assumption is reasonable. To extend the use of wall 
transfer probes to high frequencies, knowledge of the 
dynamic behavior of thermal (concentration) boun- 
dary layers is required. 

Most studies of the dynamic response of wall trans- 

fer probes [7-IO] assume that the amplitude of shear 
rate fluctuations is small compared to the time aver- 
aged shear rate. With this assumption, the time depen- 
dent scalar boundary layer equation can be linearized 
and solved asymptotically or numerically. Then the 
transfer function between the heat (mass) flux and the 
wall shear rate at different frequencies can be derived. 
The results indicate that the dynamic response is 
strongly dependent on the dimensionless frequency 

w (= Q(L’/5”$) l/3), which is the same as the Strouhal 

number [3]. When w is small, the probe response is 
fast and the quasi-steady state assumption is valid. 
However, when w is large, the probe is so slow that 

the one-third power law cannot apply. For example, 
when w = 10, the amplitude of the heat (mass) flux is 
only 29% of the value predicted by the one-third 

power law [IO]. 
The above approach is adequate for studying 

stationary turbulent flows in which the amplitude of 
fluctuations is small, but is not feasible for flows 
involving large amplitude oscillations such as physio- 

logical pulsatile flows. To study the dynamic behavior 
of wall transfer probes in large amplitude unsteady 
flows, Pedley [ 2 I] carried out an asymptotic analysis 

of non-reversing flows and Kaiping 1121 presented 
numerical results for both non-reversing and reversing 
flows. They concentrated on calculating the heat 
(mass) fluxing transient given the time-varying wall 
shear rate, but in fact the inverse problem of cal- 
culating the shear rate from the heat (mass) flux is of 
primary interest for wall shear probes. Considering 
this point, Mao and Hanratty [13] developed a tech- 

nique for the inverse problem based on a numerical 
solution similar to one presented by Kaiping [12]. 
However, the methods are not straightforward. They 
demand either assuming a functional form with sev- 

eral unknown parameters for the time dependent 
shear rate or guessing the initial shear rate and con- 
centration field, and then numerous numerical iter- 
ations are required to obtain a good fit to the measure- 
ments of heat (mass) flux. Such complicated 
procedures are not suitable for practical use. 

For non-reversing unsteady flows Menendez and 
Ramaprian fl4], using the approximate integral 
method, were able to reduce the unsteady scalar 
boundary layer equation to a simple time dependent 
ordinary differential equation, With this equation, the 
time-varying shear rate can be calculated if the cor- 
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NOMENCLATURE 

b time dependence of 6, equation (9) .y I .x2 ’ 
c concentration [mol mm ‘1 I’, Y (dimensionless) coordinate perpendicular 
D diffusivity of mass or heat [m’ s ‘1 to the probe surface [ml. 
L length of the probe [m] 
111 exponent of the weighting function 
N heating power or electric current [W, A] Greek symbols 
!V< heat or electric current convected by the constants defined in equation (29) 

fluid it. b3 constants defined in equation (30) 

N, heat or electric current lost to the I- gamma function 
substrate s dimensionless thickness of the thermal 

NU* modified Nusselt number defined in (mass) boundary layer 
equation (12) i: small number for perturbation 

NU,* modified Nusselt number of O( 1) in 
:I 

similarity variable, y/S 
equation (21) dimensionless temperature or 

NUT modified Nusselt number of O(E) in concentration 
equation (21) I? kinematic viscosity [m’ s _ ‘1 

NM,* modified Nusselt number for s = I 5 similarly variable, v/n” ’ 

PC! P&let number, SoLliD z dimensionless time 
PV Prandtl number, v/D 

$ 

b’ 

R real part of a complex function as defined in equation (32~) 

lmensionless) wall shear rate [s-- ‘1 
:” (d’ 

w, R (dimensionless) angular frequency 

sr 
time averaged shear rate [s ‘1 [s- ‘1. 
Schmidt number, v/D 

t time [s] 
T temperature [K] Subscript 
x, X (dimensionless) coordinate parallel to the b bulk condition 

probe surface [m] W surface condition. 

responding time-varying heat (mass) flux is known. 

However, due to its approximate nature, the range of 
validity of this simplified approach, particularly for 

systems with large w, still needs to be tested. 
In the present paper, we first consider a similar but 

different problem (transient LirvCque problem), that 
of determining the dynamic response of wall transfer 

probes when subjected to a step change in the surface 
temperature (concentration) under a steady flow con- 
dition. This problem has been solved analytically by 

Soliman and Chambrt- [15]. Here we develop an 
approximate solution by combining the integral 
method and the method of weighted residuals. The 
accuracy of this approximate solution is tested by 
comparing its predictions with the analytical solution 

[ 151. By assuming that the same approximation pro- 
cedures apply to the problem of non-reversing, time 
varying flows, an approximate solution, which is of 
the same form as developed in ref. [14], is then derived. 
Next, this approximate solution is verified for a wide 
range of w by comparing its predictions with available 
results in literature and our own numerical results. 

The principal aim of this paper is to show that a 
simple approximate solution can provide an effective 
tool for compensating the dynamic lag of wall transfer 
probes when inertial effects arc important. As will be 
demonstrated, this method is applicable to a wide 
range ofw and the oscillations of wall shear rate need 

not be small as long as there is no shear reversal. In 

addition, a practical approach for determining the 
value of constants needed for the approximate solu- 
tion will be discussed. 

2. STATEMENT OF THE PROBLEM 

We consider a rectangular probe which is embedded 

within a solid wall flush with the surface and with its 
long side perpendicular to the direction of mean flow. 
The temperature or concentration at the probe surface 

is controlled to maintain a constant value, which is 
different from the bulk value upstream of the probe. 

We assume that the P&let number, Pr = S,L*/D, 

is large enough so that diffusion of heat (mass) in the 
flow direction can be neglected compared to convec- 

tion, and that the thermal (concentration) boundary 
layer is much thinner than the viscous boundary layer 
(large Prandtl (Pr) or Schmidt (SC) number), so that 
the velocity field can be approximated by a linear 
profile. Thus, the scalar conservation equation can be 
simplified as : 

(1) 

where t denotes the time, 0 represents the non- 
dimensional temperature ((T- TJ( T,, - TJ) or con- 
centration ((C- C,)/(C,- C,)), D is the thermal or 
mass diffusivity, Y is the distance from the wall, X is 
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the distance from the leading edge of the probe, and 

s(t) is the time dependent wall shear rate. Equation 

(1) has also been used by Kaiping [12] and Mao and 
Hanratty [13] to study the transient behavior of the 
heat (mass) transfer probe. The underlying assump- 
tions and the justification of using equation (1) were 
discussed by Kaiping [12]. After introducing the fol- 

lowing dimensionless variables : 

where L is the length of the probe in the streamwise 

direction and S, is the time averaged wall shear rate, 
we obtain the dimensionless governing equation 

a0 ae a9 
z +Ys(~) z = :y’ (2) 

which has to be solved subject to the boundary con- 

ditions : 

H(x=O,yz)=O (34 

@J=O,z) = 1 O<xdl (3b) 

@(x,y + co, z) = 0. (3c) 

For periodic shear rate oscillations, the periodic 
solution of equation (2) is independent of the initial 
condition, and its specification is not essential. For 
convenience we choose the solution of the quasi-steady 

state equation 

(4) 

as the initial condition as suggested by Kaiping [12]. 
On the other hand, for the transient L&vEque problem, 

which describes the transient response to a step change 
in the surface condition, the initial condition should 

be 

B(x,y, z = 0) = 0. (5) 

We shall seek an approximate solution for equation 

(2) subject to the boundary conditions (3) and the 
initial condition (4) or (5). 

3. APPROXIMATE SOLUTION FOR 

TRANSIENT Ll%l%lJE PROBLEM 

In this section an approximate solution for the tran- 

sient L&vCque problem (equation (2), boundary con- 
ditions (3), initial condition (5) with steady shear rate 
s = 1) will be derived. Several approximation pro- 

cedures will be introduced to reduce the partial differ- 
ential equation (2) to an ordinary differential equation 
which will be solved numerically and compared with 
the analytical solution of Soliman and Chambrk [ 151. 

First, an approximate integral method, which is 
similar to the Von Kgrmin-Pohlhausen integral 
method [ 161, is used to eliminate the y-dependence of 
equation (2). A temperature (concentration) profile 
based on the steady state solution (Ltv&que problem) 

is chosen to satisfy the boundary conditions at y = 0 

andy+ oo: 

where Y/ = y/6(x, 7) and 6 represents the thermal (con- 
centration) boundary layer thickness which is depen- 

dent on x and z. Substituting (6) into (2) and inte- 

grating from 0 to a, we obtain an equation for the 
boundary layer thickness 

(7) 

subject to 

6(x=0,7)=0 

6(x, 7 = 0) = 0. 

(84 

(8b) 

Next, the x-dependence is eliminated by the method 

of weighted residuals [ 171. The use of the steady state 
solution as a trial function and x” as a weighting 

function have proven to be very effective in solving 
transient natural convection problems [ 171. Accord- 

ingly, we choose 

s = b(z)x ‘I1 (9) 

as the trial function. After substituting (9) into (7), 
multiplying the resulting equation by the weighting 
function x”’ and integrating from x = 0 to 1, it is found 

that 

d4 m+5/3 2 

d7 ~ = -mir 3r(2i3)(9-@2) 
(IO) 

subject to 

4(7 = 0) = 0 (11) 

where 4 = b2 and m is a constant which is determined 

below. A modified Nusselt number is defined as 

s ’ au 
Nu* = _ s7(y = O)dx =. ~..!_--m J- (12) 

0 2U‘W Jcj 

to represent the overall heat (mass) flux from the 

probe surface. 
The next step is to determine m by matching the 

approximate solution with the analytical solution in 
the limiting condition 7 + 0. When 7 + 0 the diffusion 
term, a%/~_$, dominates the convection term, $+0/8x 

[ 15, 181, and equation (2) reduces to 

a0 a20 
27 2$ 

(13) 

which has a well known solution. Solving (13) subject 
to (3) and then substituting the solution into (12), we 

obtain 

Nu*~$~ as z+O. (14) 

On the other hand, the approximate solution for NM* 
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as T + 0 can be derived by dropping 4’ ’ on the right 
hand side of equation (10). since d, + 0 as T + 0. The 
simplified version of (IO) can then be integrated. and 
we obtain 

Nu* _ 0.7980 t+o. (15) 

By equating (14) and (15), the value of nz can bc 
determined (m = -0.3337) and equation (10) can be 
rewritten as : 

;; = 0.9849(9 - 4 “l). 

Now with equations (16), (11) and (12), the tran- 

sient response of the overall heat (mass) flux can be 
calculated approximately. Equation ( 16) can be 
solved analytically, but the analytical form is not con- 
venient. Therefore, we use an ordinary differential 

equation solver (DVERK) in the IMSL package, 
which is based on the fifth order RungeeKutta 

method, to calculate the numerical results. It is noted 
that when t + x, the steady state solution is 
Nu* = 0.8075, which is identical to Lkeque’s 
solution. The overshoot ratio (Nu*/Nu$) has been 

calculated and compared with the analytical solution 
derived by the Laplace transform method [l5]. As 
shown in Fig. I, the results indicate that the approxi- 

mate solution is quite accurate. 

4. APPROXIMATE SOLUTION FOR 

NON-REVERSING UNSTEADY FLOWS 

Assuming that the same trial and weighting func- 

tions can be applied to the problem of non-reversing 
unsteady flow. we now can find an approximate solu- 
tion of equation (2) subject to boundary conditions 
(3) and initial condition (4) for a periodic shear rate 

.X(T). Omitting the details, we directly present the 
resulting ordinary differential equation 

7 It-- -- 

II ~~ approximate 

6 * * * analytical 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 7 0.8 0.9 1.0 

FIG. I. The approximate (equation (16)) and analytical 
(Soliman and Chambri [l4]) calculations of the response of 
wall transfer probes when subject to a step change of surface 

condition (temperature or concentration). 

W 
do = 0.9849(9-S(T)</Ij’“) (17) 

and initial condition 

4’,(7 = 0) = (9/s(s = 0))‘1. (18) 

Substituting equation (12) into equation (l7), WC 
obtain 

dNu* 
s(7) = I .8989Nu*j+ I .2089 

dt 
(19) 

Equation (I 9) has the same form as the approximate 
solution derived by Menendez and Ramaparian [ 141 
but with different constants. The constants in theit 

approximate solution were determined by comparing 
its predictions with the numerical solution and 

adjusting the parameters to obtain a good tit. 
The first term on the right hand side of equation 

(19) corresponds to the quasi-steady state solution 
(the one-third power law), and the second term rep- 
resents the inertial effect. With equation (19). the time 

dependent wall shear rate (s(z)) can easily bc cal- 
culated once the overall heat (mass) flux from a probe 
surface (Nu*(7)) has been measured. Howcvcr, 
because equation (19) is only an approximate solution 

derived by using the quasi-steady state solution as 
trial function, the justification for applying it to a wide 
range of unsteady flows, especially of large 0,. needs 
to be carefully investigated. 

Menendez and Ramaprian [I41 have verified that 

an approximate equation similar to equation (19) can 
be used to correct the inertia effect for heat transfer 

probes (Pr = 7) up to a fairly high frequency. But for 
a mass transfer probe. the dynamic response is much 
slower due to its large Schmidt number (lOO(t3000 
[4]) and the accuracy of (I 9) still remains unexamined. 
Because the dimcnsionlcss frequency ((I)) is pro- 
portional to the one-third power of the Prandtl 

(Schmidt) number, the value of tr) for a mass transfer 
probe could be much larger than that of a heat transfer 
probe under the same flow condition. For example. 
when using a mass transfer probe (SC = 1370) to IIXI- 

sure wall shear rates of physiological flows, (1) could 
be as high as 12, while it is about 2 for a heat transfer 

probe (Pr = 6.9) [l9]. A major goal of the present 
paper is to prove that equation (19) is still accurate 
even when cu is large. 

5. VERIFICATION OF THE APPROXIMATE 

SOLUTION 

A. For,flows with .smull shew rutr,fluc.tuutions 
In this section we will evaluate the performance 01 

equation (19) under the condition that the amplitude 
of the shear rate oscillation is small compared to the 
time averaged shear rate. The frequency response of 
the wall transfer probe under this situation has been 
studied extensively. A numerical solution covering the 
whole frequency range has been carried out by Nako- 
ryakov ct cd. [9], and their results arc in agreement 
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with the asymptotic solutions of Deslouis et al. [IO]. 

The transfer functions given in ref. [9] will be used to 
verify the accuracy of the approximate solution. 

Since the amplitude of fluctuations is small, the time 

dependent wall shear rate can be represented as 

s(r) = 1 +aR{e’“‘} (20) 

where R{ ) denotes the real part of a complex func- 
tion and E represents a small parameter. We seek a 

solution for the overall flux 

Nu*(z) = Nu,T(l+aR{Nu;Pe’“‘}+O(aZ)). (21) 

Substituting equations (20) and (21) into equation 
(19) and equating the coefficients of like powers of a on 
both sides of equation (19), we obtain two algebraic 
equations for Nu$ and NM:. The results can be ex- 

pressed as 

(4 

Nu,T = Nu* = 0.8075 s 

NuiYw) 3.073 

Nu:(w = 0) 3.073+io 

(224 

(22b) 

where Nur in fact represents the complex amplitude 

ratio of the dimensionless overall flux to the dimen- 

sionless shear rate. 
The amplitude and phase of Nu:(w)/Nu:(w = 0) 

calculated by equation (22b) and those obtained by 

Nakoryakov et al. [9] are plotted against w in Figs. 
2(a) and (b). The fine agreement over a wide range of 
o (040) confirms the accuracy of the approximate 
solution for flows with small shear rate fluctuations. 

B. For law frequency non-reversing unsteadyjows (b) 
Pedley [l 1] carried out a perturbation solution for 

unsteady flows when the dimensionless frequency w 
is small. To examine the performance of the approxi- 
mate solution (equation (19)) in an unsteady flow 
with small w, we compare the approximate solution 
with Pedley’s perturbation solution at o = 0.3. The 

result is shown in Fig. 3, and fine agreement is 
observed. However, since w is small, the approximate 
solution does not show much improvement over the 
quasi-steady state assumption. We expect the advan- 
tage of the approximate solution to be more obvious 
when w is larger as will be demonstrated in the fol- 
lowing section. 

FIG. 2. (a) The approximate (equation (22)) and numerical 
(Nakoryakov et al. [9]) calculations of the amplitude 
response for wall transfer probes in flows with small shear 
rate fluctuations. (b) The approximate (equation (22)) and 
numerical (Nakoryakov et al. [9]) calculations of the phase 
reponse for wall transfer probes in flows with small shear 

rate fluctuations. 

C. For non-reversing unsteady flows 
a. Description of the numerical method. Numerical 

algorithms for both the non-reversing and reversing 
flows have been reported by Kaiping [12] and Mao 
and Hanratty [13]. For non-reversing flows, a very 
simple algorithm, similar to the one used by Lapicque 
et al. [20] to solve the transient Ledque problem, can 
be used to generate numerical results to verify the 
approximate solution. More details are given in the 
following. 

0.67 _ approximate 

0.65 

0.63 . ..I . . . . . . . . . . . . ..I ..I 
0 1 2 3 4 5 6 

In order to remove the singularity at the leading 
edge of the probe and to improve the accuracy near 
it, the coordinate transformations 5 = )‘/.x’!~ and 

FIG. 3. Comparison between the approximate (equation 
(19)) and the perturbation solution for s = 1 f0.5 sin (0.3~). 

07 
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.Y, = .x2, 1, are introduced and equation (2) can be 
written as 

( 

(70 2 
.x , + J;,T(T)$,~ = $+ ;‘(T)y;;. (23) 

(75 lj 

The corresponding boundary conditions are 
* 

~-~;\:;._:-~ 

0(.X,.< = 0.7) = 1 (24a) 2 oSj , ,,’ 

0(x,, 5 = 6, 7) = 0 (24b) 

in which the boundary condition at 5 -+ cc has been 

replaced by 5 = 6 as suggested by the numerical 
scheme of ref. [ 131. The conditions at x , = 0 and z = 0 
are described by the following equations which can 
be integrated analytically or numerically : 

0.4‘ 
‘, , 

03 ._... quasi-steady 

0.2 * * rnumerical (Kolping) 

0.1 - numerical (present work) 

ooi....,.,.-, . . . ,,.,, .(....,...? 
0 1 2 3 4 5 6 

WT 

And the overall heat (mass) transfer rate can be 
calculated by 

Nu* = 
so 

- ,([ = O)ds,. (27) 

The partial derivatives (?/a.~,, a/~?; and S’/@‘) 
in equation (23) are approximated by second order 

central differences with uniform grids (AX, = l/20 
and A< = l/5). Then equation (23) can be trans- 
formed into a system of time dependent ordinary 
differential equations (one for each node), which can 
be integrated by the O.D.E. solver DVERK. To cal- 
culate Nu*, the derivative at the wall is approximated 

by 

i% - 38(5 = 0) +4@(5 = A{) - O(c = 2A5) ~~ ($$ = 0) = ~~.-.-._._ 2A~ ._^ _.___~ 

G-3) 

and the numerical integral of equation (27) is cal- 
culated by Simpson’s rule. 

This numerical scheme was tested for the unsteady 

shear rate s(z) = l+O.9 cos (2x), and the result is in 
good agreement with Kaiping’s numerical solution 
[12] as shown in Fig. 4. 

b. Ver$cation of the approximate solution. First, 

we compare approximate solutions calculated by 
equation (19) with numerical solutions for the 
periodic shear rates : s(z) = 1 to.5 sin (wz), w = 5 
and IO. As shown in Figs. 5(a) and (b), the overall 
flux has a sinusoidal shape which is similar to the 
quasi-steady state form, but with a smaller amplitude 
and a phase lag. Next, larger amplitude flows, 
s(r) = 1 +0.9 sin (UT), ~0 = 5 and 10, are examined. 
The results depicted in Figs. 6(a) and (b) indicate that 
the inertia has a greater effect on the low shear rate 
interval of the response than on the high shear rate 
interval. Most important of all, the agreement 

_I 

FIG. 4. Comparison between the numerical results of the 
present work and Kaiping’s [ 121 for .F = I + 0.9 cos (2~). 

between the approximate and numerical solutions 
confirms the accuracy of equation (19). 

Finally, we explore the dynamic behavior of the 

wall transfer probe when subjected to a step change 

1.01 I 

‘.OI 

Fro. 5. Comparison between the approximate (equation 
(19)) and numerical solution for (a) s = I i-O.5 sin (5s) and 

(b) s = I f0.5 sin (10~). 
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._..._ quasi-steady 

Cal 
0.2 

0’ ‘i ‘1 -.j.“‘k”“;““6”“f “‘8”“9”‘;0 

1.21 

f 
: 

0.6. 

‘$ ,:’ 
*** numerical “. / 

0.4. 
‘L ,,’ 

_ opproximot;~., 

.___ quasi-steady 

0.2 -.. 
(b) oii;kkh+A,lo 

07 

FIG. 6. Comparison between the approximate (equation 
(19)) and numerical solution for (a) s = 1+0.9 sin (5~) and 

(b) s = 1+0.9 sin (10~). 

of shear rate. In this situation, the rate of wall shear 

rate change, ds/dz, is infinite making the inertial effect 
dominant. Two cases, shear rate steps from 1 to 2 and 
1 to 5 are investigated. The normalized flux is plotted 
vs t in Fig. 7, and a good agreement is again observed. 

6. PRACTICAL CALIBRATION 

In experimental applications, the overall flux at the 

probe surface is linearly related to a measurable quan- 
tity, N, which could be the electrical power required 
to maintain a constant probe temperature for heat 
transfer probes or the electric current in an electro- 
chemical cell for mass transfer probes [2]. This linear 
relation can be described by 

Nu* = s( ,N,/Pe”’ 

NC = N-N, 

(294 

(29b) 

where c(, is a dimensional constant related to the 
physical properties and operating conditions (T,,,, T, 

or C,, C,), and N, is a constant which represents the 
heat loss to the substrate for heat transfer probes 
and is zero for mass transfer probes since there is no 

FIG. 7. Comparison between the approximate (equation 
(19)) and numerical calculations of the response of wall 
transfer probes when subject to the step changes of wall shear 

rate:s= 1+2ands= l-+5. 

current loss to the substrate. After substituting (29) 

into (19) we obtain the following dimensional equa- 
tion : 

(30) 

Theoretically, if all of the physical properties are 
known, the operating conditions are specified, and the 

heat loss to substrate can be estimated, then p,, b3 
and N, can be calculated. However, because certain 
physical properties such as thermal and mass diffu- 
sivities are not easy to measure; the performance of 

the probe is not perfect; and the heat loss is very 
difficult to estimate; it is usually not feasible to cal- 

culate the constants. It is more reliable to determine 
them by experimental calibration procedures. 

For steady flows, equation (30) is reduced to the 
quasi-steady state solution 

S”3 = fl,(N- NJ (31) 

and it is well known that the constants fi, and N, can 

be obtained by calibrating the probe in steady flow 
with known wall shear rates [2]. After fl, and NL are 

determined in steady flow, /13 can be determined by 
the calibration procedure described below. 

Because the electrical circuit response involved in 

turning a probe on is much faster than the response of 

the thermal (concentration) boundary layer, turning a 
probe on is equivalent to imposing a step change in 
the wall temperature or concentration. This process 

can be described by the transient Leveque problem. 
In fact, good agreement between the solution of the 
transient Leveque problem and experimental data for 
turning on a mass transfer probe has been reported 
by Lapicque et al. [20]. In addition, it is also noted that 
the approximate solutions for the transient Ltveque 
problem and for the unsteady non-reversing flow 
problem are the same (equations (16) and (17)). 
Consequently, equation (30) can be used to describe 
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the dynamic response of probe turn on. and the con- 
stant p1 can then be determined by matching the 
approximate solution with the experimental data 
obtained from a turn on experiment. 

Although equation (30) can describe the dynamic 
response of probe turn on. the corresponding initial 

condition (N, + c%s at t = 0). stemming from the dis- 
continuity of wall temperature (concentration) al 

I = 0. is of little practical value. To be able to have a 
proper initial condition, equation (30) needs to be 

written in the following form, 

$(t = 0) = 0 

I 
N= 

PI+ + NL 

(32b) 

(32~) 

which is similar to equation (16) that describes the 
time dependence of the thickness of thermal (con- 
centration) boundary layer. To determine the con- 
stant /Ii for a probe, a turn on experiment with a 

steady shear rate needs to be performed. Then the 
value of /I1 can be determined by adjusting it to match 
the solution of (32) with the experimental results. 

7. SUMMARY AND CONCLUSIONS 

The main purpose of this paper was to provide a 
simple method for calculating the instantaneous shear 

rate from the corresponding heat or mass flux at a wall 
transfer probe surface when the quasi-steady state 
assumption is not valid. To achieve this, an approxi- 

mate solution for the transient Leveque problem has 
been developed based on the approximate integral 
method and the method of weighted residuals. This 
solution, which is of the same form as the approximate 
solution of Menendez and Ramaprian [14], can be 
used to explore the dynamic response of thermal or 

mass boundary layers in non-reversing unsteady 

flows. 

3. A. A. Van Steen Haven and F. J. H. M. van de Beucken. 
Dynamic analysis of electrochemical wall shear rate 
measurements. J. Fluid MC&. 231, 599 614 (1991). 

4. S. G. Springer, The solution of heat transfer problems 
by the Wiener Hopf technique II. Trailing edge of a hot 
tilm, Proc. R. Sr~c. A337, 395412 (1974). 

5. D. J. Shaw and T. J. Hanratty. Turbulent mass transfer 
rates to a wall for large Schmidt numbers, A.f.(%.E. JI 
23, 160@169 (1977). 

For practical use, a dimensional form of the govern- 

ing ordinary differential equation with three param- 
eters (equation (30)) has been proposed. Two of the 
three parameters can be determined by the traditional 
calibration in steady flows at different shear rates. 
The third parameter can be found by matching the 
approximate solution with the experimental data 
obtained by turning a probe on at a steady shear rate. 
Once the parameters are known, the unsteady shear 
rate can be calculated from measurements of overall 
heat (mass) flux using equation (30) with the inertial 
effects properly compensated. 

6. R. C. Ackerberg, R. D. Pate1 and S. K. Gupta, The 
heat/mass transfer to a finite strip at small Pcclet 
numbers, J. Fluid Mwh. 86, 49-65 (1978). 

7. M. J. Lighthill, The responses of laminar skin friction 
and heat transfer to fluctuations in the stream velocity. 
Proc. R. Sot. 244A, l-23 (1954). 

8. G. Fortuna and T. J. Hanratty, Frequency response 01 
the boundary layer on wall transfer probes, lnt. J. HCOI 
Moss Trunsfer 14, 1499-l 507 (1971). 

9. V. E. Nakoryakov, A. P. Budukov, 0. N. Kashinsky 
and P. I. Geshev, Ekciro-d~jfk~ir,n Method of’ 1nrr.e 
rigation into the Lout Sfruc.tuw q! Turhuknr Flonx 
(Edited by V. E. Gasenko). Novostbtrsk (1986). 

IO. C. Deslouis, 0. Gil and B. Tribollet. Frequency response 
of electrochemical sensors to hydrodynamic Ruc- 
tuations, J. Fluid Mech. 215, 85 ~100 (1990). 

I I. T. J. Pedley, On the forced heat transfer from ;i hot lilm 
embedded in the wall in two dimensional unsteady flow, 

12. 

13. 

14. 

It should also be noted that there are limitations in 
the use of equations (19) and (30). As mentioned 
above, these equations arc approximate solutions of 
equation (I), which itself is a simplified version of 
the energy (mass) balance equation of the thermal 

15. 

16. 

(concentration) boundary layer. The limitations and 17. 

the justification of equation (I) have been cxamincd 
by Kaiping [I21 and the reader can refer to his work 
for more details. In addition. the derivation of cqua- 
tion (19) was based on the USC of the quasi-steady 
state solution as the trial function (see Section 3). 
When (1, is small. it is cxpcctcd that this trial function 

should give a reasonable approximation. But, when 
~1 is large, the validity needs to be carefully cxamincd. 

In the present paper, the accuracy of this approximate 
solution has been tested over a wide range of non- 

dimensional frequencies by comparison with available 
solutions in literature and our own finite difference 
numerical solutions. 
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